Sound Synthesis II: Digital Recording

Digital Recording

Things changed with the advent of compact discs, and later DVDs and MP3s as well. Instead of storing the continuously changing shape of the sound wave, these store the sound digitally.

What do we mean by digitally? It means the sound is stored as a collection of numbers. In fact, the numbers are binary, which means only two digits are allowed – 0 and 1. The music on a CD, or in an MP3 file, is nothing more than a very long string of 0s and 1s.

How do you get from the shape of the sound to a string of numbers? After all, the sound wave graphics we saw last time looks very different from 1000110111011011010111011000100. First of all, you sample the sound signal. That means you look at where it is at certain individual points in time, and ignore it the rest of the time. Imagine drawing the shape of a sound wave on a piece of graph paper like this:

digital1

To sample this signal, we can look at where the signal is each time it crosses one of the vertical lines. We don’t care what it’s doing the rest of the time – only its intersections with the lines matter now. Here’s the same sound, but instead of showing the full wave, we just show the samples (as Xs):

digital2

To simplify things further so we can stick to dealing with whole numbers, we’re also going to move each sample to the nearest horizontal grid line. This means that all the samples will be exactly on an intersection where two of the grid lines cross:

digital3

So far, so good. We have a scattering of Xs across the graph paper. Hopefully you can see that they still form the shape of the original sound wave quite well. From here, it’s easy to turn our sound wave into a stream of numbers, one for each sample. We just look at each vertical grid line and note the number of the horizontal grid line where our sample is:

digital4

The wave we started with is now in digital form: 5, 9, 5, 6, 7, 1, 2, 6, 4, 6. It’s still in ordinary decimal numbers, but we could convert it to binary if we wanted to. (I won’t go into details of how to convert to binary here, but if you’re curious, there are plenty of explanations of binary online – here’s one). We can record this stream of numbers in a file on a computer disk, on a CD, etc. When we want to play it back, we can reverse the process we went through above to get back the original sound wave. First we plot the positions of the samples onto graph paper:

digital3

And now we draw the sound wave – all we have to do is join up our samples:

digital5

Voila! All ready to be played back again.

This might look very spiky and different from the original smooth sound wave. That’s because I’ve used a widely spaced grid with only a few points here so you can see what’s going on. In real digital audio applications, very fine grids and lots of samples are used so that the reconstructed wave is very, very close to the original – to show just one second of CD quality sound, you would need a grid with 65,536 horizontal and 44,100 vertical lines!

(In electronics, the device that turns an analogue sound wave into samples is called an analogue to digital converter, and its cousin that performs the inverse task is a digital to analogue converter. As you probably guessed, it’s not really done using graph paper).

But why?

At this point you may be wondering, why bother with digital recording? It seems like we just went through a complicated process and gained nothing – in fact, we actually lost some detail in the sound wave, which doesn’t look quite the same after what it’s been through! There are several advantages to digital recording:

  • Digital recordings can be easily manipulated and edited using a computer. Computers (at least all the ones in common use today) can only deal with digital information – anything analogue, such as sounds and pictures, has to be digitised before they will work with it. This opens up a huge range of possibilities, allowing much more sophisticated effects and editing techniques than could be accomplished in the analogue domain. It also allows us to do clever things like compressing the information so it takes up less space while still sounding much the same (this is what the famous MP3 files do).
  • I noted above that we lost a bit of detail in our sound wave when we converted it to digital and then converted it back. However, in real life situations digital recordings generally give much better sound quality than analogue recordings. This is because the small inaccuracies introduced in the digitisation process are usually much smaller and less noticeable than the background noise that inevitably gets into analogue recording and playback equipment no matter how careful you are. Digital is more or less immune to background noise for reasons I’ll explain shortly.
  • Digital recordings can be copied an unlimited number of times without losing any quality. This is closely related to the point above about sound quality. If you’re old enough to have copied records or cassettes onto blank tapes, or taped songs off the radio, you may have noticed this in action. The copy always sounds worse than the original, with more background noise. If you make another copy from that copy instead of from the original, it will be worse still. But it isn’t like that with digital recording – if you copy a CD to another CD, or copy an MP3 file from one computer to another, there is no loss of quality – the copy sounds exactly like the original, and if you make another copy from the copy, it will also sound exactly like the original. (This isn’t just a case of the loss in quality being so small you can’t hear it – there genuinely is no loss whatsoever. The copies are absolutely identical!).

Notes on background noise

I mentioned above that digital recordings are more or less immune to background noise and that’s one of their big advantages. But first of all, what is background noise, where does it come from, and what does it do to our sound signals?

Background noise is any unwanted interference that gets into the sound signal at some point during the recording or playback process. It can come from several different sources – if the electrical signal is weak (like the signal from a microphone or from a record player’s pick-up), it can be affected by electromagnetic interference from power lines or other devices in the area. If there is dust or dirt on the surface of a record or tape, this will also distort the signal that’s read back from it.

There is no getting away from background noise, it will always appear from somewhere. If we have a vinyl record with a sound signal recorded onto it that looks like this:

digital1

by the time it gets played back through the speakers, noise from various sources will have been added to the original signal and it might look more like this:

digital7

Once the noise is there, it’s very difficult or impossible to get rid of it again, mainly because there’s no reliable way to tell it apart from the original signal. So ideally we want to minimise its chances of getting there in the first place. This is where digital recording comes in. Let’s say we have the same sound signal recorded onto a CD instead of a vinyl record. Because it’s in digital form, it will be all 0s and 1s instead of a continuously varying wave like on the vinyl. So the information on the CD will look something like this:

digital8

This time there are only two levels, one representing binary 0 and the other binary 1.

There will still be some noise added to the signal when it gets read back from the CD – maybe there is dust on the disc’s surface or electrical interference getting to the laser pick-up. So the signal we get back will look more like this:

digital9

But this time the noise doesn’t matter. As long as we can still tell what is meant to be a 0 and what is a 1, small variations don’t make any difference. In this case it’s very obvious that the original signal shape was meant to be this:

digital8

So, despite the noise, we recovered exactly the original set of samples. We can pass them through the digital to analogue converter (DAC) and get back this:

digital1

a much more accurate version of the original sound wave than we got from the analogue playback. Although the noise still got into the signal we read from the CD, it’s disappeared as if by magic and doesn’t affect what we hear like it did with the record.

(Of course, digital recording isn’t completely immune to noise. If the noise level was so high that we could no longer tell what was meant to be a 0 and what was a 1, the system would break down, but it’s normally easy enough to stop this from happening. Also, we can’t prevent noise from getting into the signal after it’s converted back to analogue form, but again this is a relatively small problem as the majority of the recording and playback system works in digital form).

Does digital recording really sound better?

Not everyone thinks so. A lot of people say they prefer the sound of analogue recordings, often saying they have a “warmer” sound compared with the “colder” sound of digital. In my opinion, yes there is a difference, but digital is more faithful to the original sound – the “warmth” people talk about is actually distortion introduced by the less accurate recording method! It’s absolutely fine to prefer that sound, in the same way that it’s absolutely fine to prefer black and white photography or impressionist paintings even though they’re less realistic than a colour photograph or a painting with lots of fine detail.

“Ah”, you might say. “But surely a perfect analogue recording would have to be better than a digital recording? Because you’re recording everything rather than just samples of it”. Technically this is true… but in reality (a) there’s no such thing as a perfect analogue recording because there are so many ways for noise to get in, and (b) at CD quality or better, the loss of information from digitising the sound is miniscule, too small for anyone to be able to hear. Double-blind tests have been done where audio experts listened to sounds and had to determine whether the sound had been converted to digital and back or not. No-one was able to reliably tell.

Phew! That was longer than I meant it to be. That’s the background… next time I really will start on actual sound synthesis, I promise!